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Abstract. Vertex weights of the two-dimensional lattice integrable models with a spin-: 
representation of SU(2), which give us a formula to calculate knot polynomials, are 
considered. Such weights, given previously, have one subtlety; namely, they yield an extra 
minus sign under some topological change of a two-dimensional projection of knots. Here 
we show the modified vertex weights which eliminate such a minus sign. 

It is now well known that the Jones polynomial of knot theory [ 11 and its generalizations 
[2-41 are closely related to the lattice-integrable models of two-dimensional statistical 
mechanics [5]. 

The two-dimensional lattice-integrable statistical models can be classified into three 
types of model: spin models, vertex models and IRF (interaction around the face) 
models. The spin models, such as the Ising model [6], consist of spin variables on the 
lattice site, interacting usually through nearest-neighbour couplings. In the vertex 
models [7, 81, statistical variables lie on bonds connecting neighbouring lattice sites 
and interactions are assigned on each lattice site at which typically four bonds meet. 
The IRF models [ 8 ]  have the statistical variables on two plaquettes (or dual lattice 
sites) with interactions among plaquettes that share a common lattice site. 

This classification, however, is not rigid. In many cases one can reformulate one 
kind of model in terms of another. For example, one can associate a model, which 
has natural formulations in terms of both the vertex and the IRF models, with every 
representation R of every compact Lie group G [9]. These example have also played 
an important role in the emergence of the concept of quantum groups [lo-161. 

On the other hand the Jones polynomial and its generalizations have an intimate 
connection with two-dimensional conformal field theory [ 17-21]. They can also be 
regarded as the vacuum expectation values of non-intersecting Wilson loops in three- 
dimensional topological quantum gauge field theory [ 51. 

In the third paper of [5], the mapping from the IRF states to the vertex states is 
discussed. The explicit formulae for the vertex weights in the case where all statistical 
variables are spin-; states of SU(2) are 

a b 
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Here the statistical variables placed on bonds take + or - and the convention for the 
SU(2) invariant antisymmetric tensors we use here is 

( 5 )  &+- - - &+- = 1. 

By using the formulae (1)-(4), we can evaluate any vacuum expectation values (or 
equivalently knot polynomials) of any knots or links of non-intersecting knots. For 
example, 

Here we denoted the vacuum expectation value by ( ). These formulae, however, 
contain one difficulty. Namely 

= -  (0) 
This minus sign comes out because of the following identity: 

So, one must be concerned about this subtle minus sign in using the formulae 
(1)-(4). In the remainder of this letter, we will reconsider the origin of the formulae 
(1)-(4) and look for a possible modification of them which eliminates this minus sign. 
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In constructing vertex weight formulae, the basic ingredient is the so-called skein 
theory for SU(2) [ 5 ] .  That is 

and 

a b - d  - c  + a / .  C 

d 
q- l /4  ') ( = q1/4 

a C 

These relations can be regarded as q-deformations of the following SU(2) identity: 

EabEcd = 8:8:-8:8: (12) 

8;s: = EbdEac + 8:8:. (13) 

Note that because of the pseudoreality of the spin-; representation of SU(2), an extra 
minus sign must be supplied to the second term of (1 1) when one considers that (1 1) 
could be derived from (10) by ~/2-rotat ion.  

Then we require invariance under the regular isotopy. This means that vacuum 
expectation values must be invariant under the following two Reidemeister moves, 

First, let us consider the Reidemeister move 11. By using the skein relations (10) 
and (1 l) ,  the left-hand side of the I1 is deformed in the following way: 
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Here we have used a factorization property of the vacuum expectation value 

W 

n 
Then the invariance under the Reidemeister move I1 determines the vacuum expectation 
value of an unknotted loop as 

Second, let us deform the both sides of the Reidemeister move 111. The left-hand 
side is 

and the right-hand side is 
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U = 0.  (19 )  -H- "+I4 
Then from (17 )  and (18 )  we obtain 

a b c  a b c  a b c  a b c  

a' b' c' a' 6' c' a' b' c' a' b' c' 

By multiplying 

a' b' 
U n and 

a b 

by (19 ) ,  we arrive at the identity 

(0) -4 
This equation must be satisfied for any value of q, so 

Equation (21 )  has the following two solutions: 

m=nJ = - I  
m=(7J=+1. 

+ = 0. 

The formulae ( 1 ) - ( 4 )  correspond to the solution ( 2 2 a )  but this solution has the 
subtlety which we explained in (8). Thus we look for the other vertex weights which 
correspond to the solution (22b) .  Because (16) is a very stringent condition there 
remains little possibility to deform the matrices Uab and U&, given in ( 3 )  and ( 4 ) .  
Fortunately, however, the solution to ( 2 2 b )  can be derived from that of ( 2 2 a )  via a 
slight modification. That is 
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These matrices clearly satisfy (226)  and (16). Then the vertex weights are constructed 
through skein relations (10) and ( I l ) ,  

because 
a b 

From the skein relations (10) and (1 l), we have 

(28) 

Then the ‘blob’ for the six-vertex model weight in the modified formulae (23)-(26) is 
a b a c a b  

c d  b d c d  
Although the subtle minus sign in (9) has been eliminated in the modified formulae 

(23)-(26), there still remains an extra minus sign contribution under rl2-rotation 
which comes from the pseudoreality of the spin-4 representation of SU(2) .  Namely, 
on the one hand, 

and, on the other hand, 

because of this minus sign 
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Before closing this letter we m?ke a comment concerning the quantum group. The 
pair annihilation matrix Uab (or Uob)  and the pair creation matrix U,, (or fiar,,) can 
be considered as the q-deformation of the SU(2) invariant antisymmetric tensors cab 
and &ab respectively. Indeed, these matrices remain invariant under the action of SU,(2) 
(or more generally SL,(2)). Namely, 

M ~ M S ;  ~ c d  =  ab ( M ~ M S ;  f i c d  = c a b )  (35) 

M : M f  ucd = ucd ( h ! f i M f  f icd  = f i c d ) .  
where ME is a matrix element of M E  SL,(2) [22]. 
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